

SYLLABUS Giochi della Chimica

Edizione 2022/2023

Indice

Classe A – Chimica Primo biennio tecnici/professionali/licei	2
Classe A – Selezioni di istituto	2
Classe A – Finali regionali	3
Classe A – Finale nazionale	5
Classe B – Chimica Triennio Licei/Istituti non compresi nella Classe C	8
Classe B – Selezioni di istituto	8
Classe B – Finali regionali	10
Classe B – Finale nazionale	15
Classe C – Triennio Istituti Tecnici – Settore Tecnologico - Indirizzo Chimica, Biotecnologie	
Classe C – Chimica analitica e strumentale - Tutte le fasi	21
Classe C – Chimica organica e biochimica - Selezioni di istituto	25
Classe C - Chimica organica e biochimica - Finali regionali e nazionale	28
Classe C – Chimica Fisica - Tutte le fasi	33

Classe A - Chimica Primo biennio tecnici/professionali/licei

Classe A - Selezioni di istituto

LABORATORIO

Norme di sicurezza in un laboratorio chimico.

LE MISURE E LE GRANDEZZE

Grandezze fisiche fondamentali e derivate. Temperatura e scale termometriche.

LE TRASFORMAZIONI FISICHE DELLA MATERIA

Stati fisici della materia. Sistemi omogenei ed eterogenei. Sostanze pure e miscugli. Stati di aggregazione della materia e passaggi di stato. Metodi di separazione dei miscugli.

DALLE TRASFORMAZIONI CHIMICHE ALLA TEORIA ATOMICA

Trasformazioni fisiche e chimiche. Elementi e composti. Leggi ponderali (legge di Lavoisier, legge di Proust, legge di Dalton).

LA QUANTITA' DI SOSTANZA IN MOLI

Massa atomica e molecolare. Mole e costante di Avogadro. Formule chimiche.

ATOMO

Elettroni, protoni e neutroni. Modelli atomici di Thomson e Rutherford. Numero atomico, numero di massa, isotopi. Atomo di Bohr e livelli energetici.

IL SISTEMA PERIODICO

Tavola periodica degli elementi: gruppi, periodi, blocchi. Simboli di Lewis degli elementi. Proprietà atomiche e andamenti periodici.

LEGAMI CHIMICI

Regola dell'ottetto e gas nobili. Concetto di valenza. Legame ionico e covalente. Differenza di elettronegatività e polarità di un legame. Strutture di Lewis. Legame metallico.

FORMA DELLE MOLECOLE E FORZE INTERMOLECOLARI

Teoria VSEPR e geometria molecolare. Dipolo elettrico e momento dipolare. Molecole polari e apolari. Forze di London, forze dipolo-dipolo, legame a idrogeno. Solubilità.

CLASSIFICAZIONE E NOMENCLATURA DEI COMPOSTI

Numero di ossidazione. Composti binari: ossidi acidi e ossidi basici, idruri e idracidi. Composti ternari: idrossidi e ossiacidi. Sali binari e ternari. Nomenclatura.

Classe A - Finali regionali

In <u>sottolineato</u> gli argomenti generalmente trattati nel biennio dei tecnici ma non trattati o trattati in maniera generica nel biennio del liceo. Tali argomenti possono essere comunque utilizzati per formulare quesiti di più alto livello per selezionare gli studenti più bravi.

LABORATORIO

DPI. Pittogrammi. Frasi H e Consigli P. Scheda di sicurezza. Misura di massa e volume (con bilancia elettronica, cilindro graduato, pipetta e buretta, matraccio tarato). Misure di temperatura e curve di riscaldamento di solidi. Separazione di miscugli omogenei ed eterogenei (filtrazione semplice e a pressione ridotta, centrifugazione, estrazione con imbuto separatore e Soxhlet, cromatografia su strato sottile e su carta, distillazione semplice). Preparazione di soluzioni a una data concentrazione. Riscaldamento a riflusso. Uso della piastra riscaldante con agitatore magnetico. Misurazione del pH tramite cartine indicatrici.

LE MISURE E LE GRANDEZZE

Grandezze fisiche fondamentali e derivate. Grandezze estensive e grandezze intensive. Temperatura e scale termometriche. Errore di una misura. Cifre significative.

LE TRASFORMAZIONI FISICHE DELLA MATERIA

Stati fisici della materia. Sistemi omogenei ed eterogenei. Sostanze pure e miscugli. Stati di aggregazione della materia e passaggi di stato. Metodi di separazione dei miscugli (filtrazione, centrifugazione, estrazione, cromatografia, distillazione).

DALLE TRASFORMAZIONI CHIMICHE ALLA TEORIA ATOMICA

Trasformazioni fisiche e chimiche. Elementi e composti. Leggi ponderali (legge di Lavoisier, legge di Proust, legge di Dalton).

LA TEORIA CINETICO-MOLECOLARE DELLA MATERIA

Energia, lavoro e calore. La teoria cinetico-molecolare della materia e i passaggi di stato.

LE LEGGI DEI GAS

Legge di Boyle, legge di Charles e legge di Gay-Lussac. Principio di Avogadro. Equazione di stato dei gas

LA QUANTITA' DI SOSTANZA IN MOLI

Massa atomica e molecolare. Mole e costante di Avogadro. Volume molare. Formule chimiche e composizione percentuale di un composto. Calcolo della formula minima e molecolare di un composto.

ATOMO

Elettroni, protoni e neutroni. Modelli atomici di Thomson e Rutherford. Numero atomico, numero di massa, isotopi. Chimica del nucleo e energia nucleare. <u>Doppia natura della luce. Onde elettromagnetiche, fotoni, spettri a righe, effetto fotoelettrico. Atomo di Bohr e livelli energetici. Energia di ionizzazione. Elettrone particella/onda. Atomo quantistico. Teoria di de Broglie</u>

<u>e Principio di indeterminazione di Heisenberg. Orbitali, numeri quantici e configurazione elettronica. Principio di esclusione di Pauli e Regola di Hund. Livelli e sottolivelli energetici.</u>

IL SISTEMA PERIODICO

Tavola periodica degli elementi: gruppi, periodi, blocchi. Simboli di Lewis degli elementi. Principali famiglie chimiche: metalli alcalini e alcalino terrosi, alogeni, metalli di transizione. Proprietà atomiche e andamenti periodici: raggio atomico, energia di ionizzazione, affinità elettronica, elettronegatività. Proprietà chimiche e andamenti periodici: metalli, non metalli e semimetalli.

LEGAMI CHIMICI

Regola dell'ottetto e gas nobili. Concetto di valenza. Legame ionico e covalente. Strutture di Lewis. <u>Teoria del legame di valenza. Diagramma di Energia di formazione del legame covalente. Proprietà dei solidi ionici, celle elementari e reticolo cristallino, conducibilità elettrica e termica, punto di fusione e solubilità in acqua. Legame metallico: proprietà, solidi metallici, reticoli, malleabilità e duttilità di un metallo. Conducibilità. Leghe metalliche. Scala di elettronegatività e legami. Polarità di un legame. Solidi reticolari: diamante, grafite e quarzo.</u>

FORMA DELLE MOLECOLE E FORZE INTERMOLECOLARI

Teoria del legame di valenza: Energia di legame e distanza di legame. Teoria VSEPR e geometria molecolare. Dipolo elettrico e momento dipolare. Molecole polari e apolari. Forze di London, forze dipolo-dipolo, legame a idrogeno. Legami intermolecolari e stato fisico della materia. Solubilità. Solidi covalenti. Tensione di vapore, tensione superficiale, viscosità.

CLASSIFICAZIONE E NOMENCLATURA DEI COMPOSTI

Numero di ossidazione e regole per la determinazione. Composti binari: ossidi acidi e ossidi basici, idruri e idracidi. Composti ternari: idrossidi e ossiacidi. Sali binari e ternari. Nomenclatura IUPAC e tradizionale.

PROPRIETA' DELLE SOLUZIONI

Soluzioni. Soluzioni elettrolitiche. Solubilità. Concentrazioni delle soluzioni (%m/m, %m/V, %V/V, ppm, Molarità, Molalità). Proprietà colligative.

REAZIONI CHIMICHE

Equazioni di reazione e bilanciamento. Tipi di reazione: sintesi, scambio semplice, decomposizione, doppio scambio. Calcoli stechiometrici, reagente limitante. Calcolo della resa di reazione.

ACIDI E BASI

Teoria di Arrhenius, Bronsted-Lowry, Lewis. Ionizzazione dell'acqua, concetto di pH e di forza acidi e basi. Calcolo del pH per acidi e basi forti. Indicatori. Idrolisi. Soluzioni tampone.

TERMOCHIMICA

Trasformazioni esotermiche ed endotermiche.

Classe A - Finale nazionale

In <u>sottolineato</u> gli argomenti generalmente trattati nel biennio dei tecnici ma non trattati o trattati in maniera generica nel biennio del liceo. Tali argomenti possono essere comunque utilizzati per formulare quesiti di più alto livello per selezionare gli studenti più bravi.

LABORATORIO

DPI. Pittogrammi. Frasi H e Consigli P. Scheda di sicurezza. Misura di massa e volume (con bilancia elettronica, cilindro graduato, pipetta e buretta, matraccio tarato). Misure di temperatura e curve di riscaldamento di solidi. Separazione di miscugli omogenei ed eterogenei (filtrazione semplice e a pressione ridotta, centrifugazione, estrazione con imbuto separatore e Soxhlet, cromatografia su strato sottile e su carta, distillazione semplice). Preparazione di soluzioni a una data concentrazione. Riscaldamento a riflusso. Uso della piastra riscaldante con agitatore magnetico. Misurazione del pH tramite cartine indicatrici.

LE MISURE E LE GRANDEZZE

Grandezze fisiche fondamentali e derivate. Grandezze estensive e grandezze intensive. Temperatura e scale termometriche. Errore di una misura. Cifre significative.

LE TRASFORMAZIONI FISICHE DELLA MATERIA

Stati fisici della materia. Sistemi omogenei ed eterogenei. Sostanze pure e miscugli. Stati di aggregazione della materia e passaggi di stato. Metodi di separazione dei miscugli (filtrazione, centrifugazione, estrazione, cromatografia, distillazione).

DALLE TRASFORMAZIONI CHIMICHE ALLA TEORIA ATOMICA

Trasformazioni fisiche e chimiche. Elementi e composti. Leggi ponderali (legge di Lavoisier, legge di Proust, legge di Dalton).

LA TEORIA CINETICO-MOLECOLARE DELLA MATERIA

Energia, lavoro e calore. La teoria cinetico-molecolare della materia e i passaggi di stato.

LE LEGGI DEI GAS

Legge di Boyle, legge di Charles e legge di Gay-Lussac. Principio di Avogadro. Equazione di stato dei gas.

LA QUANTITA' DI SOSTANZA IN MOLI

Massa atomica e molecolare. Mole e costante di Avogadro. Volume molare. Formule chimiche e composizione percentuale di un composto. Calcolo della formula minima e molecolare di un composto.

ATOMO

Elettroni, protoni e neutroni. Modelli atomici di Thomson e Rutherford. Numero atomico, numero di massa, isotopi. Chimica del nucleo e energia nucleare. <u>Doppia natura della luce. Onde elettromagnetiche, fotoni, spettri a righe, effetto fotoelettrico.</u> Atomo di Bohr e livelli energetici. Energia di ionizzazione. <u>Elettrone particella/onda.</u> Atomo quantistico. <u>Teoria di de Broglie</u>

<u>e Principio di indeterminazione di Heisenberg.</u> Orbitali, numeri quantici e configurazione elettronica. <u>Principio di esclusione di Pauli e Regola di Hund. Livelli e sottolivelli energetici.</u>

IL SISTEMA PERIODICO

Tavola periodica degli elementi: gruppi, periodi, blocchi. Simboli di Lewis degli elementi. Principali famiglie chimiche: metalli alcalini e alcalino terrosi, alogeni, metalli di transizione. Proprietà atomiche e andamenti periodici: raggio atomico, energia di ionizzazione, affinità elettronica, elettronegatività. Proprietà chimiche e andamenti periodici: metalli, non metalli e semimetalli.

LEGAMI CHIMICI

Regola dell'ottetto e gas nobili. Concetto di valenza. Legame ionico e covalente. Teoria del legame di valenza di Lewis e relative strutture. Proprietà dei solidi ionici, celle elementari e reticolo cristallino, conducibilità elettrica e termica, punto di fusione e solubilità in acqua. Legame metallico: proprietà, solidi metallici, reticoli, malleabilità e duttilità di un metallo. Conducibilità. Leghe metalliche. Scala di elettronegatività e legami. Polarità di un legame. Solidi reticolari: diamante, grafite e quarzo.

FORMA DELLE MOLECOLE E FORZE INTERMOLECOLARI

<u>Teoria del legame di valenza: Diagramma di Energia di formazione del legame covalente.</u> <u>Energia di legame e distanza di legame.</u> Teoria VSEPR e geometria molecolare. Dipolo elettrico e momento dipolare. Molecole polari e apolari. Forze di London, forze dipolo-dipolo, legame a idrogeno. Legami intermolecolari e stato fisico della materia. Solubilità. <u>Solidi covalenti. Tensione di vapore, tensione superficiale, viscosità.</u>

CLASSIFICAZIONE E NOMENCLATURA DEI COMPOSTI

Numero di ossidazione e regole per la determinazione. Composti binari: ossidi acidi e ossidi basici, idruri e idracidi. Composti ternari: idrossidi e ossiacidi. Sali binari e ternari. Nomenclatura IUPAC e tradizionale.

PROPRIETA' DELLE SOLUZIONI

Soluzioni. Soluzioni elettrolitiche. Solubilità. Concentrazioni delle soluzioni (%m/m, %m/V, %V/V, ppm, Molarità, Molalità). Proprietà colligative.

REAZIONI CHIMICHE

Equazioni di reazione e bilanciamento. Tipi di reazione: sintesi, scambio semplice, decomposizione, doppio scambio. Calcoli stechiometrici, reagente limitante. Calcolo della resa di reazione.

ACIDI E BASI

Teoria di Arrhenius, Bronsted-Lowry, Lewis. Ionizzazione dell'acqua, concetto di pH e di forza acidi e basi. Calcolo del pH per acidi e basi forti. Indicatori. Idrolisi. Soluzioni tampone.

TERMOCHIMICA

Trasformazioni esotermiche ed endotermiche.

CINETICA CHIMICA

Velocità di reazione e fattori che la influenzano.

EQUILIBRIO CHIMICO

Costante di equilibrio e principio di Le Chatelier.

OSSIDORIDUZIONI

Reazioni redox e bilanciamento. Pila Daniell. Potenziali standard di riduzione. Elettrolisi. Leggi di Faraday.

CHIMICA ORGANICA

Gruppi funzionali in semplici molecole organiche. Idrocarburi alifatici: nomenclatura e isomeria di struttura.

Classe B - Chimica

Triennio Licei/Istituti non compresi nella Classe C

Classe B - Selezioni di istituto

Da considerare anche gli argomenti inseriti nel Syllabus della Classe A e non menzionati qui.

LABORATORIO

Norme di sicurezza in un laboratorio chimico.

CHIMICA GENERALE

ATOMO

Elettroni, protoni e neutroni. Modelli atomici di Thomson e Rutherford. Numero atomico, numero di massa, isotopi. Atomo di Bohr e livelli energetici. Orbitali, numeri quantici e configurazione elettronica. Livelli e sottolivelli energetici.

IL SISTEMA PERIODICO

Tavola periodica degli elementi: gruppi, periodi, blocchi. Simboli di Lewis degli elementi. Principali famiglie chimiche: metalli alcalini e alcalino terrosi, alogeni, metalli di transizione. Proprietà periodiche: raggio atomico, elettronegatività.

LEGAMI CHIMICI

Regola dell'ottetto e gas nobili. Concetto di valenza. Legame ionico e covalente. Teoria del legame di valenza. Strutture di Lewis. Scala di elettronegatività e legami. Polarità di un legame. Legame metallico.

FORMA DELLE MOLECOLE E FORZE INTERMOLECOLARI

Energia di legame e distanza di legame. Teoria VSEPR e geometria molecolare. Dipolo elettrico e momento dipolare. Molecole polari e apolari. Forze di London, forze dipolo-dipolo, legame a H. Legami intermolecolari e stato fisico della materia. Solubilità.

PROPRIETA' DELLE SOLUZIONI

Le soluzioni. Metodi fisici e chimici per esprimere la concentrazione delle soluzioni.

EQUILIBRI ACIDO-BASE

Equilibri acido-base. Teoria di Arrhenius, Bronsted e Lowry e Lewis. Forza degli acidi e delle basi. Definizione del prodotto ionico dell'acqua e del pH.

CHIMICA FISICA

TERMOCHIMICA

Reazioni endotermiche ed esotermiche.

CHIMICA ORGANICA

CHIMICA DEL CARBONIO

L'ibridazione del carbonio (sp³, sp², sp). Legame σ e legame π . Gruppi funzionali.

ALCANI E CICLOALCANI

Nomenclatura IUPAC. Isomeria di struttura. Proprietà fisiche.

ALCHENI, ALCHINI E DIENI CONIUGATI

Nomenclatura IUPAC. Stereoisomeria geometrica. Proprietà fisiche.

IDROCARBURI AROMATICI

Il benzene: struttura e risonanza. Nomenclatura IUPAC. Proprietà fisiche.

CHIMICA ANALITICA

CENNI DI TEORIA DELLA MISURA ED ELABORAZIONE DEI DATI

La misura e l'errore nelle metodiche d'analisi. Errore assoluto e relativo. Accuratezza, precisione, sensibilità delle misure.

INTRODUZIONE ALLA CHIMICA DELLE SOLUZIONI

Soluzioni e solubilità. Concentrazione delle soluzioni (%m/V, %m/m, %V/V, molarità, molalità, normalità).

EQUILIBRIO CHIMICO

Equilibrio chimico. Fattori che influenzano l'equilibrio chimico (Principio di Le Chatelier).

Classe B - Finali regionali

Da considerare anche gli argomenti inseriti nel Syllabus della Classe A e non menzionati qui.

LABORATORIO

DPI. Pittogrammi. Frasi H e Consigli P. Scheda di sicurezza. Misura di massa e volume (con bilancia elettronica, cilindro graduato, pipetta e buretta, matraccio tarato). Misure di temperatura e curve di riscaldamento di solidi. Separazione di miscugli omogenei ed eterogenei (filtrazione semplice e a pressione ridotta, centrifugazione, estrazione con imbuto separatore e Soxhlet, cromatografia su strato sottile e su carta, distillazione semplice). Preparazione di soluzioni a una data concentrazione. Riscaldamento a riflusso. Uso della piastra riscaldante con agitatore magnetico. Misurazione del pH tramite cartine indicatrici. Titolazioni acido fortebase forte.

CHIMICA GENERALE

ATOMO

Elettroni, protoni e neutroni. Modelli atomici di Thomson e Rutherford. Numero atomico, numero di massa, isotopi. Chimica del nucleo e energia nucleare. Doppia natura della luce. Onde elettromagnetiche, fotoni. Atomo di Bohr e livelli energetici. Energia di ionizzazione. Elettrone particella/onda. Atomo quantistico. Teoria di de Broglie e Principio di indeterminazione di Heisenberg. Struttura dell'atomo secondo la meccanica quantistica. Orbitali, numeri quantici e configurazione elettronica. Livelli e sottolivelli energetici. Principio di esclusione di Pauli e Regola di Hund.

IL SISTEMA PERIODICO

Tavola periodica degli elementi: gruppi, periodi, blocchi. Simboli di Lewis degli elementi. Principali famiglie chimiche: metalli alcalini e alcalino terrosi, alogeni, metalli di transizione. Proprietà periodiche: raggio atomico, energia di prima ionizzazione, affinità elettronica, elettronegatività.

LEGAMI CHIMICI

Regola dell'ottetto e gas nobili. Concetto di valenza. Legame ionico e covalente. Teoria del legame di valenza: diagramma di Energia di formazione del legame covalente. Strutture di Lewis. Proprietà dei solidi ionici, celle elementari e reticolo cristallino, conducibilità elettrica e termica, punto di fusione e solubilità in H_2O . Legame metallico: proprietà, solidi metallici, reticoli, malleabilità, duttilità di un metallo, conducibilità. Scala di elettronegatività e legami. Polarità di un legame.

FORMA DELLE MOLECOLE E FORZE INTERMOLECOLARI

Energia di legame e distanza di legame. Teoria VSEPR e geometria molecolare. Cenni alla teoria Molecular Orbital. Dipolo elettrico e momento dipolare. Molecole polari e apolari. Forze di London, forze dipolo-dipolo, legame a H. Legami intermolecolari e stato fisico della materia. Solubilità. Tensione di vapore, tensione superficiale, viscosità.

OSSIDORIDUZIONI

Reazioni redox e bilanciamento e relazioni ponderali. Cella elettrochimica e cella elettrolitica.

PROPRIETA' DELLE SOLUZIONI

Le soluzioni. Metodi fisici e chimici per misurare la concentrazione delle soluzioni. Proprietà colligative. Innalzamento ebullioscopico e abbassamento crioscopico. Solubilità. Effetti degli elettroliti sulle proprietà colligative. Pressione osmotica. La legge di Henry. Colloidi ed effetto Tyndall.

EQUILIBRI ACIDO-BASE

Equilibri acido base. Teoria di Arrhenius, Bronsted e Lowry e Lewis. Forza degli acidi e delle basi. Grado di dissociazione. Definizione del prodotto ionico dell'acqua e del pH. Calcolo del pH di soluzioni di acidi e basi forti, di acidi e basi deboli, e di sali. Indicatori acido-base e criteri per la loro scelta. Titolazioni acido-base. Soluzioni tampone.

EQUILIBRI DI PRECIPITAZIONE

Prodotto di solubilità e sua relazione con la solubilità. Fattori che influenzano l'equilibrio di precipitazione: effetto dello ione comune. Effetto del pH sulla precipitazione di idrossidi poco solubili.

EQUILIBRI DI OSSIDORIDUZIONE

Potenziali standard di riduzione. Equazione di Nernst. Calcolo delle costanti di equilibrio delle reazioni redox. Principio delle titolazioni redox. Indicatori redox.

CHIMICA FISICA

TERMODINAMICA

Reazioni endotermiche ed esotermiche. Misura del calore di reazione. Funzioni di stato. Primo principio della termodinamica. Energia interna di un sistema. Entalpia. Secondo principio della termodinamica. Entropia. Energia libera di Gibbs.

CINETICA CHIMICA

La velocità di reazione. Ordine di reazione. Fattori che influenzano la velocità di reazione. Catalizzatori ed energia di attivazione.

INTRODUZIONE AI METODI OTTICI

Natura e proprietà della luce. Radiazioni elettromagnetiche e lunghezza d'onda. Spettro elettromagnetico. Leggi dell'ottica geometrica (riflessione e interferenza). Dispersione della luce. Fenomeni di interferenza e diffrazione. Prismi, reticoli, filtri. Quantizzazione dell'energia, equazione di Planck, effetto fotoelettrico. Configurazione elettronica, orbitali atomici e orbitali molecolari leganti e antileganti di tipo sigma, pi-greco. Interazione luce-materia e processi di eccitazione ed emissione elettronica.

CHIMICA ORGANICA

CHIMICA DEL CARBONIO

L'ibridazione del carbonio (sp^3 , sp^2 , sp). Legame σ e legame π . Legami intermolecolari, stato fisico e solubilità delle molecole organiche. Gruppi funzionali. Formule di struttura delle molecole organiche. Strutture di risonanza. Definizioni di acidi e basi di Lewis, reagenti nucleofili ed elettrofili. Calcolo del numero di ossidazione del C nelle molecole organiche. Effetto induttivo. Ibridazione e stabilità dei carbocationi, carbanioni e radicali liberi. Isomeria di struttura, conformazionale, configurazionale e ottica.

STEREOCHIMICA

Chiralità e Carbonio asimmetrico. Enantiomeri e miscele racemiche. Luce polarizzata, polarimetro, attività ottica e potere rotatorio specifico. Proiezioni di Fisher e regole per le configurazioni R, S. Composti con più carboni asimmetrici. Diastereoisomeri e composti meso.

ALCANI E CICLOALCANI

Nomenclatura IUPAC. Radicali alchilici. Isomeria di struttura, isomeria conformazionale (proiezioni di Newman) di alcani e cicloalcani. Isomeria configurazionale nei cicloalcani (in particolare nel cicloesano). Proprietà fisiche: solubilità e punto di ebollizione. Legami intermolecolari e stato fisico. Proprietà chimiche: alogenazione radicalica, combustione.

ALCHENI, ALCHINI E DIENI CONIUGATI

Nomenclatura IUPAC. Stereoisomeria geometrica. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche degli alcheni: reazioni di addizioni elettrofile; regola di Markovnikov. Addizione di acqua, alogeni, acidi alogenidrici e idrogeno. Addizioni radicaliche. Proprietà chimiche degli alchini: acidità, addizione di acqua, addizione di alogeni, addizione di acidi alogenidrici, addizione di idrogeno. Dieni coniugati; addizioni elettrofile ai sistemi coniugati.

IDROCARBURI AROMATICI

Il benzene: strutture di Kekulé, teoria della risonanza e degli orbitali molecolari, aromaticità e regola di Huckel. Nomenclatura IUPAC. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: Reazioni di sostituzione elettrofila aromatica. Proprietà chimiche: reazioni di alogenazione, nitrazione, solfonazione, alchilazione. Effetti dei sostituenti nelle sostituzioni elettrofile: gruppi attivanti e disattivanti l'anello aromatico; sostituenti orto, para e meta orientanti. Idrocarburi policiclici aromatici.

ALCOLI, FENOLI

Nomenclatura IUPAC e classificazione degli alcoli. Alcoli alifatici e aromatici. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione (addizione di acqua agli alcheni, riduzione di aldeidi e chetoni). Proprietà chimiche: acidità e basicità di alcoli e fenoli. Reazioni di ossidazione ad aldeidi, chetoni e acidi carbossilici. Tioli: caratteristiche del gruppo funzionale.

ETERI

Nomenclatura IUPAC degli eteri lineari e ciclici. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione di eteri simmetrici (disidratazione di alcoli in ambiente acido).

ALDEIDI E CHETONI

Nomenclatura IUPAC. Proprietà del gruppo carbonilico. Metodi di preparazione: ossidazione di alcoli primari e secondari. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: reazioni di addizione nucleofila, ossidazione delle aldeidi ad acidi carbossilici. Formazione di emiacetali. Condensazione aldolica semplice.

ACIDI CARBOSSILICI E DERIVATI

Nomenclatura IUPAC degli acidi carbossilici e derivati. Acidi grassi e acidi bicarbossilici. Preparazione degli acidi per ossidazione di alcoli e aldeidi. Proprietà fisiche: solubilità e punto di ebollizione. Reazioni di sostituzione nucleofila acilica. Preparazioni degli esteri (esterificazione di Fisher), ammidi e anidridi. Reattività degli esteri: reazioni di idrolisi acida e basica (saponificazione).

AMMINE

Ammine alifatiche e aromatiche. Nomenclatura IUPAC. Legame a idrogeno e proprietà fisiche: solubilità e punto di ebollizione. Le ammine come basi e come nucleofili.

POLIMERI SINTETICI

Classificazione: polimeri di addizione e di condensazione. Reazioni di polimerizzazione radicalica, polimerizzazione per policondensazione.

BIOMOLECOLE

CARBOIDRATI

Classificazione, proiezioni di Fisher, struttura ciclica semiacetalica, proiezioni di Haworth, anomeria e mutarotazione. D-aldosi e chetosi. Strutture furanosiche e piranosiche. Reazioni di Tollens, Fehling. Monosaccaridi: glucosio, fruttosio, ribosio, galattosio. Disaccaridi: maltosio, lattosio, saccarosio. Polisaccaridi: amido, glicogeno, cellulosa.

LIPIDI

Classificazione, struttura, nomenclatura e proprietà degli acidi grassi saturi e insaturi. Struttura e proprietà dei gliceridi, cere, fosfolipidi. Strutture di prostaglandine, terpeni e steroidi. Idrogenazione degli oli vegetali. Saponificazione dei grassi e degli oli. Saponi e azione detergente (micelle).

PROTEINE

Classificazione degli amminoacidi naturali. Proprietà acido-base, punto isoelettrico. Peptidi e legame peptidico, ponte disolfuro. Proteine. Struttura primaria: legame peptidico e sua geometria. Struttura secondaria: il legame a idrogeno nell' alfa-elica e nel foglietto beta. Struttura terziaria e struttura quaternaria.

ACIDI NUCLEICI

Struttura dei nucleosidi e dei nucleotidi. DNA: struttura a doppia elica. Legami a idrogeno tra le basi complementari. Struttura dell'RNA. Il codice genetico. Replicazione, trascrizione e traduzione. Altri nucleotidi di interesse biologico: ATP, NAD, FAD.

CHIMICA ANALITICA

CENNI DI TEORIA DELLA MISURA ED ELABORAZIONE DEI DATI

La misura e l'errore nelle metodiche d'analisi. Errore assoluto e relativo. Accuratezza, precisione, sensibilità delle misure. Deviazione standard di una serie di misure. Retta di regressione, metodo dei minimi quadrati.

INTRODUZIONE ALLA CHIMICA DELLE SOLUZIONI

Soluzioni e solubilità. Soluzioni sature e sovrassature. Dipendenza della solubilità dalla temperatura. Elettroliti e non elettroliti. Concentrazione delle soluzioni (%m/V, %m/m, %V/V, molarità, molalità, normalità). Procedure per la preparazione di una soluzione per pesata e per diluizione. Proprietà colligative delle soluzioni.

REAZIONI CHIMICHE

Reazioni di precipitazione, acido-base e redox. Calcoli stechiometrici, resa percentuale e reagenti limitanti.

EQUILIBRIO CHIMICO

Equilibrio chimico. Fattori che influenzano l'equilibrio chimico (Principio di Le Chatelier).

ANALISI VOLUMETRICA

Titolazioni dirette, relazioni dell'analisi volumetrica. Punto equivalente di titolazione. Preparazione di soluzioni standard e concetto di standardizzazione.

EQUILIBRI ACIDO-BASE

Calcolo del pH di soluzioni di: acidi o basi forti, di acidi o basi deboli, acido o basi poliprotici. Calcoli sui tamponi (coppie coniugate acido-base). Indicatori acido-base e criteri per la loro scelta. Titolazioni acido-base.

EQUILIBRI DI OSSIDORIDUZIONE

Calcolo delle costanti di equilibrio delle reazioni redox. Principio delle titolazioni redox. Indicatori redox.

POTENZIOMETRIA

Cella galvanica, pila Daniell. Calcolo della f.e.m. di una pila. Misura della f.e.m. di una pila.

CONDUTTIMETRIA

Conducibilità elettrica delle soluzioni. Conduttimetri e celle conduttimetriche. Misure conduttimetriche dirette.

Classe B - Finale nazionale

Da considerare anche gli argomenti inseriti nel Syllabus della Classe A e non menzionati qui.

LABORATORIO

DPI. Pittogrammi. Frasi H e Consigli P. Scheda di sicurezza. Misura di massa e volume (con bilancia elettronica, cilindro graduato, pipetta e buretta, matraccio tarato). Misure di temperatura e curve di riscaldamento di solidi. Separazione di miscugli omogenei ed eterogenei (filtrazione semplice e a pressione ridotta, centrifugazione, estrazione con imbuto separatore e Soxhlet, cromatografia su strato sottile e su carta, distillazione semplice). Preparazione di soluzioni a una data concentrazione. Riscaldamento a riflusso. Uso della piastra riscaldante con agitatore magnetico. Misurazione del pH tramite cartine indicatrici. Titolazioni acido fortebase forte.

CHIMICA GENERALE

ATOMO

Elettroni, protoni e neutroni. Modelli atomici di Thomson e Rutherford. Numero atomico, numero di massa, isotopi. Chimica del nucleo e energia nucleare. Doppia natura della luce. Onde elettromagnetiche, fotoni. Atomo di Bohr e livelli energetici. Energia di ionizzazione. Elettrone particella/onda. Atomo quantistico. Teoria di de Broglie e Principio di indeterminazione di Heisenberg. Struttura dell'atomo secondo la meccanica quantistica. Orbitali, numeri quantici e configurazione elettronica. Livelli e sottolivelli energetici. Principio di esclusione di Pauli e Regola di Hund.

IL SISTEMA PERIODICO

Tavola periodica degli elementi: gruppi, periodi, blocchi. Simboli di Lewis degli elementi. Principali famiglie chimiche: metalli alcalini e alcalino terrosi, alogeni, metalli di transizione. Proprietà periodiche: raggio atomico, energia di prima ionizzazione, affinità elettronica, elettronegatività.

LEGAMI CHIMICI

Regola dell'ottetto e gas nobili. Concetto di valenza. Legame ionico e covalente. Teoria del legame di valenza: diagramma di Energia di formazione del legame covalente. Strutture di Lewis. Proprietà dei solidi ionici, celle elementari e reticolo cristallino, conducibilità elettrica e termica, punto di fusione e solubilità in H₂O. Scala di elettronegatività e legami. Polarità di un legame. Legame metallico: proprietà, solidi metallici, reticoli, malleabilità, duttilità di un metallo, conducibilità.

FORMA DELLE MOLECOLE E FORZE INTERMOLECOLARI

Energia di legame e distanza di legame. Teoria VSEPR e geometria molecolare. Cenni alla teoria Molecular Orbital. Dipolo elettrico e momento dipolare. Molecole polari e apolari. Forze di London, forze dipolo-dipolo, legame a H. Legami intermolecolari e stato fisico della materia. Solubilità. Tensione di vapore, tensione superficiale, viscosità.

OSSIDORIDUZIONI

Reazioni redox e bilanciamento e relazioni ponderali. Cella elettrochimica e cella elettrolitica.

PROPRIETA' DELLE SOLUZIONI

Le soluzioni. Metodi fisici e chimici per misurare la concentrazione delle soluzioni. Proprietà colligative. Innalzamento ebullioscopico e abbassamento crioscopico. Solubilità. Effetti degli elettroliti sulle proprietà colligative. Pressione osmotica. La legge di Henry. Colloidi ed effetto Tyndall.

EQUILIBRI ACIDO-BASE

Equilibri acido base. Teoria di Arrhenius, Bronsted e Lowry e Lewis. Forza degli acidi e delle basi. Grado di dissociazione. Definizione del prodotto ionico dell'acqua e del pH. Calcolo del pH di soluzioni di acidi e basi forti, di acidi e basi deboli, e di sali. Indicatori acido-base e criteri per la loro scelta. Titolazioni acido-base. Soluzioni tampone.

EQUILIBRI DI PRECIPITAZIONE

Prodotto di solubilità e sua relazione con la solubilità. Fattori che influenzano l'equilibrio di precipitazione: effetto dello ione comune. Effetto del pH sulla precipitazione di idrossidi poco solubili.

EQUILIBRI DI OSSIDORIDUZIONE

Potenziali standard di riduzione. Equazione di Nernst. Calcolo delle costanti di equilibrio delle reazioni redox. Principio delle titolazioni redox. Indicatori redox.

CHIMICA FISICA

TERMODINAMICA

Reazioni endotermiche ed esotermiche. Misura del calore di reazione. Funzioni di stato. Primo principio della termodinamica. Energia interna di un sistema. Entalpia. Secondo principio della termodinamica. Entropia. Energia libera di Gibbs.

CINETICA CHIMICA

La velocità di reazione. Ordine di reazione. Fattori che influenzano la velocità di reazione. Catalizzatori ed energia di attivazione.

INTRODUZIONE AI METODI OTTICI

Natura e proprietà della luce. Radiazioni elettromagnetiche e lunghezza d'onda. Spettro elettromagnetico. Leggi dell'ottica geometrica (riflessione e interferenza). Dispersione della luce. Fenomeni di interferenza e diffrazione. Prismi, reticoli, filtri. Quantizzazione dell'energia, equazione di Planck, effetto fotoelettrico. Configurazione elettronica, orbitali atomici e orbitali molecolari leganti e antileganti di tipo sigma, pi-greco. Interazione luce-materia e processi di eccitazione ed emissione elettronica.

CHIMICA ORGANICA

CHIMICA DEL CARBONIO

L'ibridazione del carbonio (sp^3 , sp^2 , sp). Legame σ e legame π . Legami intermolecolari, stato fisico e solubilità delle molecole organiche. Gruppi funzionali. Formule di struttura delle molecole organiche. Strutture di risonanza. Definizioni di acidi e basi di Lewis, reagenti nucleofili ed elettrofili. Calcolo del numero di ossidazione del C nelle molecole organiche. Effetto induttivo. Ibridazione e stabilità dei carbocationi, carbanioni e radicali liberi. Isomeria di struttura, conformazionale, configurazionale e ottica.

STEREOCHIMICA

Chiralità e Carbonio asimmetrico. Enantiomeri e miscele racemiche. Luce polarizzata, polarimetro, attività ottica e potere rotatorio specifico. Proiezioni di Fisher e regole per le configurazioni R, S. Composti con più carboni asimmetrici. Diastereoisomeri e composti meso.

ALCANI E CICLOALCANI

Nomenclatura IUPAC. Radicali alchilici. Isomeria di struttura, isomeria conformazionale (proiezioni di Newman) di alcani e cicloalcani. Isomeria configurazionale nei cicloalcani (in particolare nel cicloesano). Proprietà fisiche: solubilità e punto di ebollizione. Legami intermolecolari e stato fisico. Proprietà chimiche: alogenazione radicalica, combustione.

ALCHENI, ALCHINI E DIENI CONIUGATI

Nomenclatura IUPAC. Stereoisomeria geometrica. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche degli alcheni: reazioni di addizioni elettrofile; regola di Markovnikov. Addizione di acqua, alogeni, acidi alogenidrici e idrogeno. Addizioni radicaliche. Proprietà chimiche degli alchini: acidità, addizione di acqua, addizione di alogeni, addizione di acidi alogenidrici, addizione di idrogeno. Dieni coniugati; addizioni elettrofile ai sistemi coniugati.

IDROCARBURI AROMATICI

Struttura del benzene: teoria della risonanza e degli orbitali molecolari, aromaticità e regola di Huckel. Nomenclatura IUPAC. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: Reazioni di sostituzione elettrofila aromatica. Proprietà chimiche: reazioni di alogenazione, nitrazione, solfonazione, alchilazione. Effetti dei sostituenti nelle sostituzioni elettrofile: gruppi attivanti e disattivanti l'anello aromatico; sostituenti orto, para e meta orientanti. Idrocarburi policiclici aromatici.

ALCOLI, FENOLI

Nomenclatura IUPAC e classificazione degli alcoli. Alcoli alifatici e aromatici. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione (addizione di acqua agli alcheni, riduzione di aldeidi e chetoni). Proprietà chimiche: acidità e basicità di alcoli e fenoli. Reazioni di ossidazione ad aldeidi, chetoni e acidi carbossilici. Tioli: caratteristiche del gruppo funzionale.

ETERI

Nomenclatura IUPAC degli eteri lineari e ciclici. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione di eteri simmetrici (disidratazione di alcoli in ambiente acido).

ALDEIDI E CHETONI

Nomenclatura IUPAC. Proprietà del gruppo carbonilico. Metodi di preparazione: ossidazione di alcoli primari e secondari. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: reazioni di addizione nucleofila, ossidazione delle aldeidi ad acidi carbossilici. Formazione di emiacetali. Condensazione aldolica semplice.

ACIDI CARBOSSILICI E DERIVATI

Nomenclatura IUPAC degli acidi carbossilici e derivati. Acidi grassi e acidi bicarbossilici. Preparazione degli acidi per ossidazione di alcoli e aldeidi. Proprietà fisiche: solubilità e punto di ebollizione. Reazioni di sostituzione nucleofila acilica. Preparazioni degli esteri (esterificazione di Fisher), ammidi e anidridi. Reattività degli esteri: reazioni di idrolisi acida e basica (saponificazione).

AMMINE

Ammine alifatiche e aromatiche. Nomenclatura IUPAC. Legame a idrogeno e proprietà fisiche: solubilità e punto di ebollizione. Le ammine come basi e come nucleofili.

POLIMERI

Classificazione: polimeri di addizione e di condensazione. Reazioni di polimerizzazione radicalica, polimerizzazione per policondensazione.

BIOMOLECOLE

CARBOIDRATI

Classificazione, proiezioni di Fisher, struttura ciclica semiacetalica, proiezioni di Haworth, anomeria e mutarotazione. D-aldosi e chetosi. Strutture furanosiche e piranosiche. Reazioni di Tollens, Fehling. Monosaccaridi: glucosio, fruttosio, ribosio, galattosio. Disaccaridi: maltosio, lattosio, saccarosio. Polisaccaridi: amido, glicogeno, cellulosa.

LIPIDI

Classificazione, struttura, nomenclatura e proprietà degli acidi grassi saturi e insaturi. Struttura e proprietà dei gliceridi, cere, fosfolipidi. Strutture di prostaglandine, terpeni e steroidi. Idrogenazione degli oli vegetali. Saponificazione dei grassi e degli oli. Saponi e azione detergente (micelle). Transesterificazione degli acidi grassi.

AMMINOACIDI E PROTEINE

Classificazione degli amminoacidi naturali. Proprietà acido-base, punto isoelettrico. Peptidi e legame peptidico, ponte disolfuro. Proteine. Struttura primaria: legame peptidico e sua geometria. Struttura secondaria: il legame a idrogeno nell' alfa-elica e nel foglietto beta. Struttura terziaria e struttura quaternaria.

ENZIMI

Classificazione degli enzimi. Cofattori enzimatici: ioni metallici e coenzimi. Meccanismo d'azione degli enzimi e sito catalitico. Cinetica delle reazioni catalizzate da enzimi: equazione di Michaelis-Menten e significato della K_M e $V_{\rm max}$ Fattori di regolazione della velocità di una

reazione enzimatica: concentrazione del substrato, concentrazione dell'enzima, pH, temperatura. lnibitori dell'attività enzimatica: inibizione competitiva e non competitiva.

ACIDI NUCLEICI

Struttura dei nucleosidi e dei nucleotidi. DNA: struttura a doppia elica. Legami a idrogeno tra le basi complementari. Struttura dell'RNA. Il codice genetico. Replicazione, trascrizione e traduzione. Altri nucleotidi di interesse biologico: ATP, NAD, FAD.

CHIMICA ANALITICA

CENNI DI TEORIA DELLA MISURA ED ELABORAZIONE DEI DATI

La misura e l'errore nelle metodiche d'analisi. Errore assoluto e relativo. Accuratezza, precisione, sensibilità delle misure. Deviazione standard di una serie di misure. Retta di regressione, metodo dei minimi quadrati.

INTRODUZIONE ALLA CHIMICA DELLE SOLUZIONI

Soluzioni e solubilità. Soluzioni sature e sovrassature. Dipendenza della solubilità dalla temperatura. Elettroliti e non elettroliti. Concentrazione delle soluzioni (%m/V, %m/m, %V/V, molarità, molalità, normalità). Procedure per la preparazione di una soluzione per pesata e per diluizione. Proprietà colligative delle soluzioni.

REAZIONI CHIMICHE

Reazioni di precipitazione, acido-base e redox. Calcoli stechiometrici, resa percentuale e reagenti limitanti.

EQUILIBRIO CHIMICO

Equilibrio chimico. Fattori che influenzano l'equilibrio chimico (Principio di Le Chatelier).

CINETICA CHIMICA

Determinazione sperimentale dei parametri cinetici di una reazione.

ANALISI VOLUMETRICA

Titolazioni dirette, relazioni dell'analisi volumetrica. Punto equivalente di titolazione. Preparazione di soluzioni standard e concetto di standardizzazione.

EOUILIBRI ACIDO-BASE

Calcolo del pH di soluzioni di: acidi o basi forti, di acidi o basi deboli, acido o basi poliprotici. Calcoli sui tamponi (coppie coniugate acido-base). Indicatori acido-base e criteri per la loro scelta. Titolazioni acido-base.

EQUILIBRI DI COMPLESSAZIONE

Procedura operativa per la determinazione della durezza totale, temporanea, permanente, calcica e magnesiaca di un'acqua.

EQUILIBRI DI OSSIDORIDUZIONE

Calcolo delle costanti di equilibrio delle reazioni redox. Principio delle titolazioni redox. Indicatori redox. Permanganometria. Iodimetria.

POTENZIOMETRIA

Cella galvanica, pila Daniell. Calcolo della f.e.m. di una pila. Misura della f.e.m. di una pila. Principio ed uso del piaccametro. Titolazioni potenziometriche acido-base.

CONDUTTIMETRIA

Conducibilità elettrica delle soluzioni. Conduttimetri e celle conduttimetriche. Misure conduttimetriche dirette.

SPETTROFOTOMETRIA UV-VIS

Spettro di assorbimento. Strumentazione in spettrofotometria di assorbimento; schema a blocchi dello spettrofotometro UV-Vis (sorgenti, elementi disperdenti, celle, rivelatori). Tecniche operative di analisi qualitativa (analisi degli spettri di assorbimento) e quantitativa (costruzione di rette di taratura). Legge di Lambert-Beer.

ARGOMENTI DIFFICILMENTE TRATTATI MA PRESENTI NEL SYLLABUS OLIMPIA-DI

- Basi della Spettrometria di massa (ione molecolare, frammentazioni dello ione molecolare, interpretazione di semplici spettri di massa)
- Interpretazione di semplici spettri NMR (chemical shift, molteplicità di spin, integrazione dei picchi.

Classe C - Triennio Istituti Tecnici -Settore Tecnologico - Indirizzo Chimica, Materiali e Biotecnologie

Classe C - Chimica analitica e strumentale - Tutte le fasi

In corsivo gli argomenti che prima venivano approfonditi in Chimica Fisica

Le domande per le tre fasi verranno modulate in base alla complessità relativa alla fase stessa, garantendo una omogeneità nella distribuzione degli argomenti riportati nelle domande. Da considerare anche tutti gli argomenti inseriti nella Classe A e non menzionati qui.

LABORATORIO

Le attività teoriche sotto riportate prevedono anche le attività di laboratorio correlate.

ANALISI CLASSICA

INTRODUZIONE ALLA CHIMICA DELLE SOLUZIONI

Soluzioni e solubilità. Soluzioni sature e sovrassature. Dipendenza della solubilità dalla temperatura. Elettroliti e non elettroliti. Processo di solubilizzazione di soluti ionici e molecolari. Concentrazione delle soluzioni (%m/V, %m/m, %V/V, molarità, molalità, parti per milione). Procedure per la preparazione di una soluzione per pesata e per diluizione. Proprietà colligative delle soluzioni.

STATO GASSOSO

Lo stato gassoso. Il modello di gas ideale. Leggi della materia in fase gassosa: legge di Boyle, Charles e Gay-Lussac, legge di Avogadro, equazione di stato dei gas ideali, legge di Dalton.

REAZIONI CHIMICHE

Reazioni di precipitazione, acido-base e redox. Numero di ossidazione. Agente riducente e ossidante. Bilanciamento delle reazioni redox. Calcoli stechiometrici, resa percentuale e reagenti limitanti.

TERMODINAMICA ED EQUILIBRIO CHIMICO

Elementi di termodinamica. Significato e applicazione delle funzioni di stato (energia libera, entalpia ed entropia). Energia libera e spontaneità di una reazione chimica. L'attività chimica: coefficienti di attività, teoria di Debye-Huckel, forza ionica di una soluzione.

Equilibrio chimico. Reazioni incomplete e stato di equilibrio. Equilibrio dinamico e legge di azione di massa. Quoziente di reazione. Equilibri in fase gassosa ed in soluzione acquosa. Relazione tra Kp e Kc. Fattori che influenzano l'equilibrio chimico (Principio di Le Chatelier).

CINETICA CHIMICA

Legge della velocità delle reazioni chimiche. Significato e determinazione sperimentale dei parametri cinetici. Equazione cinetica del primo e del secondo ordine (a singolo reagente). Tempo di dimezzamento e datazione dei reperti archeologici. Teoria degli urti molecolari. Equazione di Arrhenius. Teoria del complesso attivato e meccanismo di azione dei catalizzatori.

ANALISI VOLUMETRICA E GRAVIMETRICA

Metodi e fasi operative dell'analisi quantitativa. Analisi volumetrica: reazioni dell'analisi volumetrica, titolazioni dirette, indirette e retrotitolazione. Punto equivalente e punto finale di titolazione, errore di titolazione. Calcoli nell'analisi volumetrica. Definizione di equivalente chimico e normalità. Relazione tra molarità e normalità e calcoli relativi. Preparazione di soluzioni standard e concetto di standardizzazione. Analisi gravimetrica per precipitazione (principio ed operazioni di base).

EQUILIBRI ACIDO-BASE

Equilibri acido base. Teoria di Arrhenius, Bronsted e Lowry e Lewis. Forza degli acidi e delle basi. Grado di dissociazione. Definizione del prodotto ionico dell'acqua e del pH. Calcolo del pH di soluzioni di: acidi (o basi) forti, di acidi (o basi) deboli, acido (o basi) poliprotici, acidi e basi deboli. Le soluzioni tampone, capacità tamponante e potere tampone. Calcoli sui tamponi (coppie coniugate acido-base). Indicatori acido-base e criteri per la loro scelta. Curve di titolazione acido forte - base forte, acido debole - base forte e viceversa. Titolazioni acido-base. Definizione di acidimetria e alcalimetria.

EQUILIBRI DI PRECIPITAZIONE

Prodotto di solubilità e sua relazione con la solubilità. Fattori che influenzano l'equilibrio di precipitazione: effetto dello ione comune, effetto sale, temperatura. Effetto del pH sulla precipitazione di idrossidi poco solubili. Analisi argentometrica (metodo di Mohr, Volhard, Fajans).

EQUILIBRI DI COMPLESSAZIONE

Composti di coordinazione e loro equilibri di formazione. Leganti e coordinatori. Equilibri di complessazione. Formazione di chelati: il caso dell'EDTA. Indicatori metallo-cromici. Principio delle titolazioni complessometriche dirette e di spostamento. Procedura operativa per la determinazione della durezza totale, temporanea, permanente, calcica e magnesiaca di un'acqua.

EQUILIBRI DI OSSIDORIDUZIONE

Potenziali standard di riduzione. Equazione di Nernst. Calcolo delle costanti di equilibrio delle reazioni redox. Principio delle titolazioni redox. Indicatori redox. Permanganometria. Iodimetria e iodometria.

ANALISI STRUMENTALE

CENNI DI TEORIA DELLA MISURA ED ELABORAZIONE DEI DATI

La misura e l'errore nelle metodiche d'analisi. Errore determinato e indeterminato. Errore assoluto e relativo. Accuratezza, precisione, sensibilità delle misure. Deviazione standard di una serie di misure. Retta di regressione, metodo dei minimi quadrati.

POTENZIOMETRIA

Potenziale di elettrodo. Cella galvanica, pila Daniell. Calcolo della f.e.m. di una pila. Tipi di elettrodo. Elettrodi di misura e di riferimento. Elettrodo di vetro per la misura del pH. Misura della f.e.m. di una pila. Principio ed uso del piaccametro. Titolazioni potenziometriche acido-base e determinazione del punto di flesso con metodo grafico (dei prolungamenti) e analitico (derivata prima e derivata seconda).

CONDUTTIMETRIA

Principio e applicazioni delle analisi conduttimetriche. Conducibilità elettrica delle soluzioni. Conduttimetri e celle conduttimetriche. Conducibilità specifica, costante di cella. Mobilità degli ioni. Misure conduttimetriche dirette e indirette. Titolazioni conduttimetriche nel caso di sistemi acido-base.

INTRODUZIONE AI METODI OTTICI

Natura e proprietà della luce. Radiazioni elettromagnetiche e lunghezza d'onda. Spettro elettromagnetico. Leggi dell'ottica geometrica (riflessione e interferenza). Dispersione della luce. Fenomeni di interferenza e diffrazione. Prismi, reticoli, filtri. Quantizzazione dell'energia, equazione di Plank, effetto fotoelettrico. Cenni alla configurazione elettronica (orbitali atomici ed estensione alla configurazione elettronica delle molecole); orbitali molecolari leganti e antileganti di tipo sigma, pi-greco, n. Interazione luce-materia e processi di eccitazione ed emissione elettronica.

SPETTROFOTOMETRIA UV-VIS

Processo di assorbimento elettronico. Spettro di assorbimento. Cromofori e cromogeni. Strumentazione in spettrofotometria di assorbimento; schema a blocchi dello spettrofotometro UV-Vis (sorgenti, elementi disperdenti, celle, rivelatori). Tecniche operative di analisi qualitativa (analisi degli spettri di assorbimento) e quantitativa (costruzione di rette di taratura). Legge di Lambert e Beer, legge delle additività dell'assorbanza.

SPETTROFOTOMETRIA IR

Vibrazioni molecolari e modello classico dell'oscillatore armonico. Parametri caratteristici degli spettri IR (posizione delle bande, intensità e forma). Regole di base per l'interpretazione di uno spettro IR. Segnali tipici e vibrazioni molecolari dei principali gruppi funzionali. Schema a blocchi dello spettrofotometro IR. Sistemi e dispositivi per la preparazione del campione. Analisi qualitativa, riconoscimento di gruppi funzionali ed interpretazione degli spettri IR.

FOTOMETRIA DI FIAMMA IN ASSORBIMENTO

Assorbimento ed emissione atomica. Spettri atomici di assorbimento ed emissione. Uso della spettrometria di emissione per indagini qualitative. Analisi quantitativa con l'Assorbimento Atomico. Tipi di strumento, schema a blocchi e caratteristiche dei componenti in spettrofotometria di Assorbimento Atomico. Analisi quantitativa: metodo della retta di taratura e metodo delle aggiunte.

METODI CROMATOGRAFICI

Esperimento fondamentale: cromatografia su colonna. Meccanismi chimico-fisici della separazione cromatografica: adsorbimento, ripartizione e scambio ionico. Cromatografia su colonna,

carta, strato sottile. Cromatogramma: parametri per la separazione (costante di distribuzione, fattore di ritenzione, selettività, efficienza e risoluzione). Teoria dei piatti e teoria delle velocità. Equazione di van Deemter. HPLC: schema a blocchi e principi di funzionamento, colonne cromatografiche, fasi stazionarie legate, cromatografia a fase diretta ed inversa, rivelatori spettrofotometrici. GC: schema a blocchi e principi di funzionamento, colonne impaccate e colonne capillari, fasi stazionarie in GLC, rivelatore FID ed ECD.

Classe C - Chimica organica e biochimica - Selezioni di istituto

In corsivo gli argomenti che prima venivano approfonditi in Chimica Fisica

LABORATORIO

Determinazione del punto di fusione di composti organici. Cristallizzazione di composti organici. Distillazione semplice, in corrente di vapore e a pressione ridotta (rotavapor). Estrazione in continuo (imbuto separatore) e in discontinuo (apparato Soxhlet). Cromatografia su colonna, su carta e su strato sottile.

IL LEGAME CHIMICO

Natura e proprietà della luce. Struttura dell'atomo secondo la fisica classica (atomo di Bohr) e la meccanica quantistica. Equazione d'onda. Differenza tra il concetto di orbita e orbitale. Numeri quantici. Livelli e sotto livelli energetici. Forma degli orbitali atomici. Configurazione elettronica degli atomi. Energia di ionizzazione e affinità elettronica. Tavola Periodica. Regola dell'ottetto e simbolismo di Lewis: legame ionico, legame covalente, legame dativo. Strutture di Lewis di molecole covalenti. Elettronegatività e legami chimici. Energia di legame e teoria del legame di valenza. Forma delle molecole ed angoli di legame. Teoria VSEPR. Sovrapposizione degli orbitali atomici e formazione degli orbitali molecolari. L'ibridazione del carbonio (sp³, sp², sp) e geometria delle molecole organiche. Ibridazione sp³, sp² e sp dell'azoto e ibridazione sp³ e sp² dell'ossigeno. Legame σ e legame π . Legami intermolecolari: attrazione dipolo-dipolo, forze di Van der Waals, legame a idrogeno. Legami intermolecolari, stato fisico e solubilità delle molecole organiche. Molecole con doppi e tripli legami. Gruppi funzionali. Composti carbociclici ed eterociclici. Formule di struttura delle molecole organiche. Scissione omolitica ed eterolitica di un legame. Acidi e basi di Bronsted-Lowry e di Lewis. Reagenti nucleofili ed elettrofili. Carica formale. Strutture di risonanza. Effetto induttivo e mesomerico. Ibridazione e stabilità dei carbocationi, carbanioni e radicali liberi. Calcolo del numero di ossidazione del C nelle molecole organiche.

ALCANI E CICLOALCANI

Nomenclatura IUPAC e comune. Radicali alchilici. Isomeria di struttura, isomeria conformazionale (strutture a cavalletto e proiezioni di Newman) di alcani e cicloalcani. Diagramma di energia delle conformazioni degli alcani lineari. Isomeria configurazionale nei cicloalcani (in particolare nel cicloesano). Proprietà fisiche: solubilità e punto di ebollizione. Legami intermolecolari e stato fisico. Proprietà chimiche: alogenazione radicalica e meccanismo di reazione, combustione.

ALCHENI, ALCHINI E DIENI CONIUGATI

Nomenclatura. Stereoisomeria geometrica. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche degli alcheni: reazioni di addizioni elettrofile e meccanismo di reazione; regola di Markovnikov e diagramma dell'energia (intermedi di reazione, complesso attivato e energia di transizione in reazioni endotermiche ed esotermiche). Addizione di acqua, alogeni,

acidi alogenidrici e idrogeno; reazioni di idroborazione/ossidazione, ozonolisi, addizione di KMnO₄. Addizioni radicaliche. Proprietà chimiche degli alchini: acidità, addizione di acqua, addizione di alogeni, addizione di acidi alogenidrici, addizione di idrogeno, idroborazione/ossidazione. Dieni coniugati ed effetto di risonanza; addizioni elettrofile ai sistemi coniugati.

IDROCARBURI AROMATICI

Il benzene: strutture di Kekulé, teoria della risonanza e degli orbitali molecolari, energia di risonanza e stabilità energetica, aromaticità e regola di Huckel. Nomenclatura. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: Reazioni di sostituzione elettrofila aromatica e diagramma dell'energia di reazione. Meccanismi delle reazioni di alogenazione, nitrazione, solfonazione, acilazione, alchilazione. Effetti dei sostituenti nelle sostituzioni elettrofile: gruppi attivanti e disattivanti l'anello aromatico; sostituenti orto, para e meta orientanti. Orientazione in presenza di più sostituenti e importanza nella sintesi. Reazioni in catena laterale: alogenazione, ossidazione di alchilbenzeni. Idrocarburi policiclici aromatici: nomenclatura.

STEREOCHIMICA

Chiralità e Carbonio asimmetrico. Enantiomeri e miscele racemiche. Luce polarizzata, polarimetro, attività ottica e potere rotatorio specifico. Proiezioni di Fisher e regole per le configurazioni R, S. Composti con più carboni asimmetrici. Diastereoisomeri e composti meso: strutture e proprietà. Il decorso stereochimico delle reazioni di addizione elettrofila.

ALOGENURI ALCHILICI

Alogenuri alchilici, allilici, vinilici e arilici. Nomenclatura. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione a partire dagli alcheni e dagli alcoli. Proprietà chimiche: cinetica chimica e ordine di reazione, reazioni di sostituzione nucleofila (SN2 e SN1) e di eliminazione (E2 e E1); meccanismi delle reazioni e diagrammi di energia. Influenza del solvente (polare protico e aprotico), del nucleofilo, del gruppo uscente e del substrato nelle sostituzioni nucleofile. Decorso stereochimico delle reazioni di Sostituzione nucleofila. Competizione tra le reazioni di sostituzione e di eliminazione. I reattivi di Grignard: preparazione e reattività.

ALCOLI, FENOLI E TIOLI

Nomenclatura e classificazione degli alcoli. Alcoli alifatici e aromatici. Il legame a idrogeno negli alcoli. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione (addizione di acqua agli alcheni, riduzione di aldeidi e chetoni, addizione nucleofila dei reattivi di Grignard al carbonile). Proprietà chimiche: acidità e basicità di alcoli e fenoli; formazione di alogenuri (reazione con HX, SOCl₂ e PX₃) e saggio di Lucas, reazioni di ossidazione ad aldeidi, chetoni e acidi carbossilici. Alcoli con più ossidrili: proprietà fisiche e nomenclatura. Reattività dei fenoli nelle S.E.A. Ossidazione dei fenoli. Tioli: nomenclatura, proprietà fisiche (solubilità e punto di ebollizione) e chimiche (acidità, preparazione e reattività).

ETERI ED EPOSSIDI

Nomenclatura degli eteri lineari e ciclici. Proprietà fisiche: solubilità e punto di ebollizione. Eteri come solventi. Metodi di preparazione di eteri simmetrici (disidratazione di alcoli in ambiente acido) e asimmetrici (sintesi di Williamson). Proprietà chimiche: scissione in ambiente acido.

ALDEIDI E CHETONI

Nomenclatura. Proprietà del gruppo carbonilico. Metodi di preparazione: ossidazione di alcoli primari e secondari, idratazione e idroborazione/ossidazione degli alchini. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: reazioni di addizione nucleofila e meccanismi di reazione. Addizione di HCN, acetiluri, alcoli e tioalcoli, reattivi di Grignard e composti azotati. Formazione di emiacetali ed acetali. Ossidazione delle aldeidi ad acidi carbossilici. Riduzione del carbonile: addizione di LiAlH $_4$ e NaBH $_4$, riduzione di Clemmensen e Wolf-Kishner. Equilibrio cheto-enolico e tautomeria. Acidità degli idrogeni in α e ioni enolato. Condensazione aldolica semplice e mista.

ACIDI CARBOSSILICI E DERIVATI

Nomenclatura degli acidi carbossilici e derivati. Acidi grassi e acidi bicarbossilici. Preparazione degli acidi per ossidazione di alcoli e aldeidi, carbossilazione di un Grignard, idrolisi dei nitrili, ossidazione in catena laterale di alchilbenzeni. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: acidità e formazione di sali. Reazioni di sostituzione nucleofila acilica: meccanismo. Derivati degli acidi: nomenclatura, proprietà e reattività a confronto. Preparazioni degli esteri (esterificazione di Fisher), alogenuri acilici, ammidi e anidridi.

Reattività degli esteri: reazioni di idrolisi acida e basica (saponificazione), ammonolisi, reazioni con reattivi di Grignard, riduzione con LiAlH₄. Reazioni di alogenuri acilici e anidridi con H₂O, alcol e NH₃. Idrolisi e riduzione delle ammidi.

AMMINE

Ammine alifatiche e aromatiche e classificazione. Nomenclatura. Legame a idrogeno e proprietà fisiche: solubilità e punto di ebollizione. Le ammine come basi e come nucleofili. Confronto delle basicità e acidità di ammine e ammidi. Metodi di preparazione: alchilazione di ammoniaca e ammine, riduzione di composti azotati, amminazione riduttiva da aldeidi e chetoni, riduzione di nitrili e ammidi. Reattività: acilazione delle ammine con derivati degli acidi, reazioni con composti carbonilici. Formazione di composti di ammonio quaternari. Sali di diazonio aromatici: preparazione e reazioni di sostituzione. Reazioni di diazocopulazione.

Classe C - Chimica organica e biochimica - Finali regionali e nazionale

In corsivo gli argomenti che prima venivano approfonditi in Chimica Fisica.

<u>Sottolineati</u> gli argomenti generalmente non sempre trattati e/o non approfonditi nella programmazione scolastica e da prendere in considerazione soltanto nella **fase nazionale**.

LABORATORIO

Determinazione del punto di fusione di composti organici. Cristallizzazione di composti organici. Distillazione semplice, in corrente di vapore e a pressione ridotta (rotavapor). Estrazione in continuo (imbuto separatore) e in discontinuo (apparato Soxhlet). Cromatografia su colonna, su carta e su strato sottile. Sintesi di composti organici e work-up di reazione.

IL LEGAME CHIMICO

Natura e proprietà della luce. Struttura dell'atomo secondo la fisica classica (atomo di Bohr) e la meccanica quantistica. Differenza tra il concetto di orbita e orbitale. Numeri quantici. Livelli e sotto livelli energetici. Forma degli orbitali atomici. Configurazione elettronica degli atomi. Energia di ionizzazione e affinità elettronica. Tavola Periodica. Regola dell'ottetto e simbolismo di Lewis: legame ionico, legame covalente, legame dativo. Strutture di Lewis di molecole covalenti. Elettronegatività e legami chimici. Energia di legame e teoria del legame di valenza. Forma delle molecole ed angoli di legame. Teoria VSEPR. Sovrapposizione degli orbitali atomici e formazione degli orbitali molecolari. L'ibridazione del carbonio (sp³, sp², sp) e geometria delle molecole organiche. Ibridazione sp³, sp² e sp dell'N e ibridazione sp³ e sp² dell'O. Legame σ e legame π . Legami intermolecolari: attrazione dipolo-dipolo, forze di Van der Waals, legame a idrogeno. Legami intermolecolari, stato fisico e solubilità delle molecole organiche. Molecole con doppi e tripli legami. Gruppi funzionali. Composti carbociclici ed eterociclici. Formule di struttura delle molecole organiche. Scissione omolitica ed eterolitica di un legame. Acidi e basi di Bronsted-Lowry e di Lewis. Reagenti nucleofili ed elettrofili. Carica formale. Strutture di risonanza. Effetto induttivo e mesomerico. Ibridazione e stabilità dei carbocationi, carbanioni e radicali liberi. Calcolo del numero di ossidazione del C nelle molecole organiche.

ALCANI E CICLOALCANI

Nomenclatura IUPAC e comune. Radicali alchilici. Isomeria di struttura, isomeria conformazionale (strutture a cavalletto e proiezioni di Newman) di alcani e cicloalcani. Diagramma di energia delle conformazioni degli alcani lineari. Isomeria configurazionale nei cicloalcani (in particolare nel cicloesano). Proprietà fisiche: solubilità e punto di ebollizione. Legami intermolecolari e stato fisico. Proprietà chimiche: alogenazione radicalica e meccanismo di reazione, combustione.

ALCHENI, ALCHINI E DIENI CONIUGATI

Nomenclatura. Stereoisomeria geometrica. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche degli alcheni: reazioni di addizioni elettrofile e meccanismo di reazione; regola di Markovnikov e diagramma dell'energia (intermedi di reazione, complesso attivato e energia di transizione in reazioni endotermiche ed esotermiche). Trasposizione di carbocationi. Addizione di acqua, alogeni, acidi alogenidrici e idrogeno; reazioni di idroborazione/ossidazione, ozonolisi, addizione di KMnO4. Addizioni radicaliche. Proprietà chimiche degli alchini: acidità, addizione di acqua, addizione di alogeni, addizione di acidi alogenidrici, addizione di idrogeno, idroborazione/ossidazione. Dieni coniugati ed effetto di risonanza; addizioni elettrofile ai sistemi coniugati, cicloaddizioni (reazione di Diels-Alder).

IDROCARBURI AROMATICI

Il benzene: strutture di Kekulé, teoria della risonanza e degli orbitali molecolari, energia di risonanza e stabilità energetica, aromaticità e regola di Huckel. Nomenclatura. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: Reazioni di sostituzione elettrofila aromatica e diagramma dell'energia di reazione. Meccanismi delle reazioni di alogenazione, nitrazione, solfonazione, acilazione, alchilazione. Effetti dei sostituenti nelle sostituzioni elettrofile: gruppi attivanti e disattivanti l'anello aromatico; sostituenti orto, para e meta orientanti. Orientazione in presenza di più sostituenti e importanza nella sintesi. Reazioni in catena laterale: alogenazione, ossidazione di alchilbenzeni. Idrocarburi policiclici aromatici: nomenclatura.

STEREOCHIMICA

Chiralità e Carbonio asimmetrico. Enantiomeri e miscele racemiche. Luce polarizzata, polarimetro, attività ottica e potere rotatorio specifico. Proiezioni di Fisher e regole per le configurazioni R, S. Composti con più carboni asimmetrici. Diastereoisomeri e composti meso: strutture e proprietà. Il decorso stereochimico delle reazioni di addizione elettrofila. Risoluzione di miscele racemiche.

ALOGENURI ALCHILICI

Alogenuri alchilici, allilici, vinilici e arilici. Nomenclatura. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione a partire dagli alcheni e dagli alcoli, reazione con NBS. Proprietà chimiche: *cinetica chimica e ordine di reazione*, reazioni di sostituzione nucleofila (SN2 e SN1) e di eliminazione (E2 e E1); meccanismi delle reazioni e *diagrammi di energia*. Influenza del solvente (polare protico e aprotico), del nucleofilo, del gruppo uscente e del substrato nelle sostituzioni nucleofile. Decorso stereochimico delle reazioni di Sostituzione nucleofila. Competizione tra le reazioni di sostituzione e di eliminazione. I reattivi di Grignard: preparazione e reattività.

ALCOLI, FENOLI E TIOLI

Nomenclatura e classificazione degli alcoli. Alcoli alifatici e aromatici. Il legame a idrogeno negli alcoli. Proprietà fisiche: solubilità e punto di ebollizione. Metodi di preparazione (addizione di acqua agli alcheni, riduzione di aldeidi e chetoni, addizione nucleofila dei reattivi di Grignard al carbonile). Proprietà chimiche: acidità e basicità di alcoli e fenoli; formazione di alogenuri (reazione con HX, SOCl₂ e PX₃) e saggio di Lucas, reazioni di ossidazione ad aldeidi, che-

toni e acidi carbossilici. Alcoli con più ossidrili: proprietà fisiche e nomenclatura. Reattività dei fenoli nelle S.E.A. Ossidazione dei fenoli. Tioli: nomenclatura, proprietà fisiche (solubilità e punto di ebollizione) e chimiche (acidità, preparazione e reattività).

ETERI ED EPOSSIDI

Nomenclatura degli eteri lineari e ciclici. Proprietà fisiche: solubilità e punto di ebollizione. Eteri come solventi. <u>Eteri corona: nomenclatura e proprietà</u>. Metodi di preparazione di eteri simmetrici (disidratazione di alcoli in ambiente acido) e asimmetrici (sintesi di Williamson). Proprietà chimiche: scissione in ambiente acido. <u>Epossidi: preparazione (alcheni e perossiacidi) e reattività (scissione in ambiente acido e basico).</u>

ALDEIDI E CHETONI

Nomenclatura. Proprietà del gruppo carbonilico. Metodi di preparazione: ossidazione di alcoli primari e secondari, idratazione e idroborazione/ossidazione degli alchini. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: reazioni di addizione nucleofila e meccanismi di reazione. Addizione di HCN, acetiluri, alcoli e tioalcoli, reattivi di Grignard e composti azotati. Formazione di emiacetali ed acetali. <u>Acetali ciclici come gruppo protettore</u>. Formazione di tioacetali. Ossidazione delle aldeidi ad acidi carbossilici. <u>Reazione dell'aloformio</u>. Riduzione del carbonile: addizione di LiAlH₄ e NaBH₄, riduzione di Clemmensen e Wolf-Kishner. <u>Riduzione di tioacetali. Sintesi di Wittig. Reazione di Cannizzaro</u>. Equilibrio cheto-enolico e tautomeria. Acidità degli idrogeni in α e ioni enolato. Condensazione aldolica semplice e mista.

ACIDI CARBOSSILICI E DERIVATI

Nomenclatura degli acidi carbossilici e derivati. Acidi grassi e acidi bicarbossilici. Preparazione degli acidi per ossidazione di alcoli e aldeidi, carbossilazione di un Grignard, idrolisi dei nitrili, ossidazione in catena laterale di alchilbenzeni. Proprietà fisiche: solubilità e punto di ebollizione. Proprietà chimiche: acidità e formazione di sali. Reazioni di sostituzione nucleofila acilica: meccanismo. Derivati degli acidi: nomenclatura, proprietà e reattività a confronto. Preparazioni degli esteri (esterificazione di Fisher), alogenuri acilici, ammidi e anidridi.

Reattività degli esteri: reazioni di idrolisi acida e basica (saponificazione), ammonolisi, reazioni con reattivi di Grignard, riduzione con LiAlH₄. Reazioni di alogenuri acilici e anidridi con H₂O, alcol e NH₃. Idrolisi e riduzione delle ammidi. <u>Condensazione di Claisen.</u>

AMMINE

Ammine alifatiche e aromatiche e classificazione. Nomenclatura. Legame a idrogeno e proprietà fisiche: solubilità e punto di ebollizione. Le ammine come basi e come nucleofili. Confronto delle basicità e acidità di ammine e ammidi. Metodi di preparazione: alchilazione di ammoniaca e ammine, riduzione di composti azotati, amminazione riduttiva da aldeidi e chetoni, riduzione di nitrili e ammidi. Reattività: acilazione delle ammine con derivati degli acidi, reazioni con composti carbonilici. Formazione di composti di ammonio quaternari. Sali di diazonio aromatici: preparazione e reazioni di sostituzione (reazioni di Sandmeyer), Reazioni di diazocopulazione.

COMPOSTI ETEROCICLICI

Eterocicli esatomici: piridina, pirimidina. <u>Reazioni di sostituzione elettrofila e nucleofila aromatica sulla piridina</u>. Aromaticità e basicità della piridina. Eterocicli pentatomici: furano, pirrolo, tiofene (aromaticità); <u>reazioni di sostituzione elettrofila</u>. Azoli. Conoscenza strutture di eterocicli ad anelli condensati: <u>chinolina, isochinolina, diazine</u>, pirimidine, indoli e purine. Basi puriniche e pirimidiniche: strutture.

POLIMERI SINTETICI

Classificazione: polimeri di addizione e di condensazione. Monomeri vinilici Meccanismo delle reazioni di polimerizzazione radicalica, polimerizzazione cationica, polimerizzazione anionica. Polistirene e polietilene. Polimeri stereoregolari. Polimerizzazione di Ziegler-Natta. Polipropilene isotattico. Polimeri dienici: gomme naturali e sintetiche, vulcanizzazione. Copolimeri. Polimerizzazione per policondensazione. Poliesteri (PET), poliammidi (Nylon 6:6). Poliuretani, bachelite e resine epossidiche.

BIOMOLECOLE

Lipidi: classificazione, struttura, nomenclatura e proprietà degli acidi grassi saturi e insaturi. Struttura e proprietà dei gliceridi, cere, fosfolipidi. Strutture di prostaglandine, terpeni e steroidi. Idrogenazione degli oli vegetali. Saponificazione dei grassi e degli oli. Saponi e azione detergente (micelle). <u>Detergenti sintetici</u>. Transesterificazione degli acidi grassi e biodiesel.

Carboidrati: classificazione, stereochimica, proiezioni di Fisher, struttura ciclica semiacetalica, proiezioni di Haworth, anomeria e mutarotazione. D-aldosi e chetosi. Strutture furanosiche e piranosiche. Reazioni dei monosaccaridi (formazione di esteri, eteri, riduzione, ossidazione ad acidi aldarici, aldonici e uronici). Reazioni di Tollens, Fehling, <u>Benedict</u>. Formazione di Oglicosidi e N-glicosidi. Monosaccaridi (forme aperte e chiuse di glucosio, galattosio, fruttosio). Disaccaridi (maltosio, cellobiosio, lattosio, saccarosio). Polisaccaridi: amido, glicogeno, cellulosa. Fosfati degli zuccheri, desossi zuccheri, ammino zuccheri.

Amminoacidi, peptidi e proteine: proprietà e classificazione degli amminoacidi naturali, stereochimica. Proprietà acido-base, punto isoelettrico. Elettroforesi. Reazione della ninidrina. Peptidi e legame peptidico, ponte disolfuro. Proteine. Struttura primaria: legame peptidico e sua geometria, analisi degli amminoacidi e determinazione della sequenza di una proteina. Struttura secondaria: il legame a idrogeno nell' α -elica e nel foglietto β . Struttura terziaria e struttura quaternaria. Conformazione nativa di una proteina ed agenti denaturanti. Classificazione delle proteine in base alla loro funzione biologica.

Nucleotidi ed acidi nucleici: Strutture di ribosio, desossiribosio e basi azotate. Struttura dei nucleosidi e dei nucleotidi. Polinucleotidi e legami fosfodiesterei. DNA: struttura primaria e secondaria (doppia elica). Legami a idrogeno tra le basi complementari. Struttura e funzioni dell'RNA (RNA ribosomiale, RNA messaggero e RNA transfer). Il codice genetico. <u>Replicazione, trascrizione e traduzione. Nucleotidi biologicamente importanti: ATP, Coenzima A, NAD e FAD.</u>

ENZIMI

Classificazione internazionale degli enzimi. Cofattori enzimatici: ioni metallici e coenzimi. Cinetica delle reazioni catalizzate da enzimi: equazione di Michaelis-Menten e significato della KM e Vmax. Retta dei doppi reciproci (Lineweaver-Burk). Fattori di regolazione della velocità di una reazione enzimatica: concentrazione del substrato, concentrazione dell'enzima, pH, temperatura. Inibitori dell'attività enzimatica: inibizione reversibile competitiva e non competitiva, Variazione della KM e Vmax ed esempi di inibitori. Inibizione irreversibile, esempi. Enzimi allosterici: modelli Monod e Koshland. Effettori allosterici. Cinetica degli enzimi allosterici.

ARGOMENTI DIFFICILMENTE TRATTATI MA PRESENTI NEL SYLLABUS OLIMPIA-DI

- Spettrofotometria UV-Vis e IR: interpretazione degli spettri di semplici molecole organiche. L'argomento teorico viene trattato nel programma di Chimica analitica e strumentale.
- <u>Basi della Spettrometria di massa (ione molecolare, frammentazioni dello ione molecolare, interpretazione di semplici spettri di massa).</u>
- <u>Interpretazione di semplici spettri NMR (chemical shift, molteplicità di spin, integrazione dei picchi).</u>

Classe C - Chimica Fisica - Tutte le fasi

In corsivo gli argomenti di chimica-fisica che sono già inseriti all'interno dei programmi di chimica analitica e chimica organica. I restanti argomenti sono estratti dal programma di Tecnologie chimiche industriali, disciplina presente solo nell'articolazione Chimica e Materiali, e possono essere utilizzati solo per formulare quesiti per la fase regionale e nazionale.

IL LEGAME CHIMICO

Natura e proprietà della luce. Struttura dell'atomo secondo la fisica classica (atomo di Bohr) e la meccanica quantistica. Equazione d'onda. Differenza tra il concetto di orbita e orbitale. Numeri quantici. Livelli e sotto livelli energetici. Forma degli orbitali atomici. Configurazione elettronica degli atomi. Energia di ionizzazione e affinità elettronica. Tavola Periodica. Regola dell'ottetto e simbolismo di Lewis: legame ionico, legame covalente, legame dativo. Strutture di Lewis di molecole covalenti. Elettronegatività e legami chimici. Energia di legame e teoria del legame di valenza. Forma delle molecole ed angoli di legame. Teoria VSEPR. Polarità delle molecole. Orbitali ibridi. Orbitali molecolari. Legame σ e legame π . Legami intermolecolari: attrazione dipolodipolo, forze di Van der Waals, legame a idrogeno.

STATO GASSOSO

Lo stato gassoso. Il modello di gas ideale. Leggi della materia in fase gassosa: legge di Boyle, Charles e Gay-Lussac, legge di Avogadro, equazione di stato dei gas ideali, legge di Dalton.

STATO LIQUIDO

Teoria cinetico-molecolare. Viscosità. Tensione superficiale. Dinamica dei fluidi ideali. Equazione di Bernoulli. I diagrammi di stato delle sostanze pure. Teoria cinetico-molecolare e passaggi di stato. Evaporazione ed ebollizione di sostanze pure. La tensione di vapore. La legge di Raoult e legge di Henry.

LE PROPRIETA' COLLIGATIVE DELLE SOLUZIONI

Variazione della tensione di vapore nelle soluzioni. Innalzamento ebullioscopico. Abbassamento crioscopico Pressione osmotica. La legge di Henry.

TERMODINAMICA ED EQUILIBRIO CHIMICO

Elementi di termodinamica. Significato e applicazione delle funzioni di stato (energia libera, entalpia ed entropia). Energia libera e spontaneità di una reazione chimica. L'attività chimica: coefficienti di attività, teoria di Debye-Huckel, forza ionica di una soluzione.

Equilibrio chimico. Reazioni incomplete e stato di equilibrio. Equilibrio dinamico e legge di azione di massa. Quoziente di reazione. Equilibri in fase gassosa ed in soluzione acquosa. Relazione tra Kp e Kc. Fattori che influenzano l'equilibrio chimico (Principio di Le Chatelier).

TERMOCHIMICA

Reazioni esotermiche ed endotermiche. Legge di Hess. Entalpia standard di reazione.

CINETICA CHIMICA

Legge della velocità delle reazioni chimiche. Significato e determinazione sperimentale dei parametri cinetici. Equazione cinetica del primo e del secondo ordine (a singolo reagente). Tempo di dimezzamento e datazione dei reperti archeologici. Teoria degli urti molecolari. Equazione di Arrhenius. Teoria del complesso attivato e meccanismo di azione dei catalizzatori.

CINETICA ENZIMATICA

Classificazione degli enzimi, sito catalitico, coenzimi e cofattori enzimatici. Cinetica delle reazioni catalizzate da enzimi: equazione di Michaelis-Menten e significato della KM e Vmax.

ELETTROCHIMICA

Potenziale di elettrodo. Cella galvanica, pila Daniell. Calcolo della f.e.m. di una pila. Tipi di elettrodo. Elettrodi di misura e di riferimento. Elettrodo di vetro per la misura del pH. Misura della f.e.m. di una pila. Elettrolisi. Leggi di faraday.